Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Fine-tuning in Artificial Intelligence refers to the process of making subtle adjustments to a pre-trained AI model so that it better adapts to specific tasks or datasets. This technique is especially prevalent in the field of machine learning, where a model developed for a general purpose is refined to perform more effectively in a particular context or application. Fine-tuning is crucial because it allows for the customization of AI models to meet unique requirements without the need for training a model from scratch.

The fine-tuning process typically involves retraining a pre-trained model on a new, typically smaller, dataset that is more representative of the specific task or problem at hand. This retraining adjusts the weights of the neural network, enabling the model to focus on features and patterns more relevant to the new dataset. Fine-tuning can significantly improve performance in tasks like image recognition, natural language processing, and predictive analysis by tailoring the model to the nuances of the specific data and use case.

Fine-tuning is widely used across various AI applications. In healthcare, models are fine-tuned to diagnose specific diseases using medical imaging. In finance, AI systems are fine-tuned for more accurate prediction of market trends or credit scoring. In the field of NLP, fine-tuning is used to adapt language models to specific languages or dialects.

We use fine-tuning in Mangity. You can use your own fine-tuned instans or we offer consultancy for fine-tuning models.

Ready to level-up?

Engage your audience 10x faster & never struggle with slow go-to-market and costly translations again.

image